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Phase Diagrams of Ascending 
and Minimum Type in Terms of 
Concentration FI u ctu a t ions i n 
Binary Liquid and Solid 
Solu tionst 
A. B. BHATIA 
Department of Physics, University of Alberta, Edmonton, Canada 

and 

N. H. MARCH$ 

The thermodynamics of binary alloy phase diagrams of ascending and minimum types is 
shown to lead to a rather direct relation between the ratio of the slopes of the liquidus and 
the solidus curves, at a given temperature T, and the ratio ( ( A c ) ~ > ~ ( ( A c ) ~ > ~  of the con- 
centration fluctuations in the liquid and the solid solutions. The latent heats of the two 
pure components also enter in a direct manner, as could have been anticipated from 
the results of ideal solution theory. 

Minimum type phase diagrams are not possible in ideal solutions nor in conformal 
solutions with the same interaction energies in solid and liquid states. But they are 
shown to arise naturally in our formalism from differences in behaviour of ( (Ac)')' and 
< (AC)*> '. 

Application has then been made to four alloy systems, Ag -Au, Cd -Mg, Bi -Sb having as- 
cending type phase diagrams, and Au - Cu of the minimum type. In Cd -Mgand Au -Cu, the 
conformal solution model works well, with physically reasonable choices of the interaction 
energies q and o, in liquid and solid. In minimum type solutions, the minimum tempera- 
ture and corresponding concentration are shown to depend only on the difference q - 
w,. For Ag-Au and Bi-Sb, there is no difficulty in getting the shapes of liquidus and solidus 
curves correctly from the conformal solution model, although there are some discrepancies 
of detail. Finally, some brief comments are made about the concentration fluctuations in 
Au -Pt alloys from the known phase diagram. 

tWork supported in part by the National Research Council of Canada. 
$Present address: Department of Physics, Imperial CONege, South Kensington, London S. W.7. 

England. The contribution of one of US (NHM) to this work was largely carried out during a 
visit to the Physics Department, University of Alberta, Edmonton in the summer of 1974. 
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46 A .  B. BHATIA AND N. H.  MARCH 

1 INTRODUCTION 

Listed in Hansen4 are numerous examples of binary alloy phase diagrams of 
ascending and of minimum type. Figure 1 shows schematically (i-iv) 
examples of diagrams of ascending type, and also (v) the minimum type of 
liquidus and solidus behaviour. 

While some attention has been paid hitherto to the calculation of individual 
diagrams (see, for example, Reismad and other references given there), our 
aim in present work is rather different. We want to combine recent progress 
in our understanding of concentration fluctuations in solutions with a more 
careful thermodynamical discussion of the two qualitatively different types 
of diagrams shown in Figure 1. When ideal solution theory is applied, dif- 
ferent characteristics of the ascending type diagrams have been shownE 
to arise from variations in the melting temperatures and latent heats of the 
pure components A and B. But when we study even such a relatively simple 
alloy system as Ag-Au, quantitative agreement cannot be obtained in this 
way. But more important for our present discussion, ideal solution theory 
cannot lead to the minimum type of phase diagram (Fig. 1 v). 

FIGURE 1 Schematic forms of phase diagrams of ascending and minimum type: (i) Phase 
diagram showing both liquidus and solidus to be concave, e.g. A = Ag, B = Au. (ii) Phase 
diagram showing both liquidus and solidus to be convex, e.g. A = Cd, B := Mg. (iii) Phase 
diagram showing inflected curves for liquidus and solidus, e.g. A = Au, B = Pt. (iv)Phase 
diagram with liquidus convex and solidus concave. e.g. A = Cu, B = Ni. (v) Minimum type 
phase diagram, e.g. A = Rb, B = K. 
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CONCENTRATION FLUCTUATIONS IN BINARY LIQUID 41 

We have already calculated l s 2  the liquidus curves of some simple eutectic 
binary alloys (a) from conformal solution theory6 and (b) from a theory of 
the Flory (1942) type, which can incorporate large size differences between 
the components. One result' which turns out to be directly useful in inter- 
preting the shapes of liquidus curves in such eutectics is the formula for the 
slope AT/ACz, given by 

Here c2 = 1 - c, c being the concentration of component 1, while Scc, of 
course, in a eutectic, refers to the concentration fluctuations in the liquid 
solution and is defined precisely by 

G, being the Gibbs free energy of mixing. L in (1.1) is a generalized concen- 
tration-dependent latent heat defined by the writers' and in lowest order 
L = 'Llo, the latent heat of pure component 1. 

It is perfectly clear qualitatively that the new feature which must enter 
the theory when we turn from eutectics to the phase diagrams shown in 
Figure 1 is a description of the concentration fluctuations ((AC)~)~ in the 
solid solution. One simplification that it is important to emphasize in this 
connection is that, (see Figure I),  we are dealing in the present paper with 
alloys which form continuous solid solutions. These are characterized by 
relatively smZZ size differences and generally the solid pure elements A and 
B have the same crystal structure. 

One of the main findings of the present work (see Section 3.1 below) is 
that the equilibrium conditions (Section 2) for the phase diagrams shown in 
Figure 1 yield generalizations of the formula fl.1) for the slopes of the 
liquidus and solidus curves. In view of our remarks in the previous para- 
graph, it should occasion no surprise that the slope of the solidus involves 
directly the concentration fluctuations < (AC)~>~  in the solid solution (Eq. 
3.  I I below). Naturally, our equations reduce to the well-known forms8 
(also Section 5 below) for ideal solutions. For the calculations of specific 
phase diagrams, we shall use here the model of conformal solutionst (see 
sections 6 and 7). 

t A  necessary, though not sufficient, condition for this model to apply is that size dif- 
ferences are not too large. This, we have already noted, is the case for the diagrams of 
Figure 1. 
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48 A .  B. BHATIA A N D  N. H. MARCH 

2 THERMODYNAMIC EQUATIONS 

As used above, the superscripts 1 and s refer respectively to the liquid and 
solid solution. N: and Nf, refer to the numbers of the two types of atoms in 
the liquid. A n  additional ‘subscript 0 will indicate the appropriate pure 
component. 

We shall work with liquid (CI) and solid (c,) concentrations given by 

c1 = + NL) (2.1) 
and 

If the chemical potentials of A(B) in liquid and solid solutions are denoted 
by p,, , pA , pB and p i ,  then the equilibrium conditions are given by I s 1  

(2.3) 

(2.4) 

I 
PA = p: 

and 
I 

FB = pk 

Here, of course, the p’s are functions of T and P and of c1 or c,. 

2.1 Equilibrium conditions in terms of activities 

It will be helpful at this point to express the equilibrium conditions (2.3) 
and (2.4) in terms of activities a. These are defined by 

(2.5) 
(2.6) 
(2.7) 

(2.8) 

The activity coefficients y have also been introduced in Eqs. (2.5-2.8); 
in terms of these an ideal solution is characterized by all y’s equal to unity. 

Using the Eqs. (2.3-2.8), we can write the conditions for equilibrium in 
the forms 

I 1  
pA = pA0 + RT In a: = pi0 + RT In &(I-cl) 

p i  = ,do + RT In a: = p i o  + RT In y i ( 1 - q )  
I 1  I 

p~ = p ~ o  + RT In aB = pio + RT In cI 

and 
pi = pio + RTIn a; = pio + RTIn &c,.  

(2.9) 

and 

YB cs = eXp( - FBO/  RT), (2.10) 
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CONCENTRATION FLUCTUATIONS IN BINARY LIQUID 

where the quantities FA, and FBO are solely properties of the pure compon- 
ents and are defined by 

(2.11) 

(2.12) 

49 

I 
FAO = PA0 - Pi0  

and 
I 

FBO = PBO - &O. 

It is clear then that if we have knowledge of the thermodynamics of the pure 
components A and B, plus information about the solutions (both liquid and 
solid) summarized in the activities, then Eqs. (2.9) and (2.10) can be solved 
simultaneously to yield the liquidus c1 (T) and the solidus c, (T). Before turn- 
ing to discuss the results of Eqs. (2.9) and (2.10) for simple models, we take 
up the point raised in the Introduction, namely the generalizations of ( 1 . 1 )  
appropriate to the liquidus and solidus curves. 

3 SLOPES OF LIQUIDUS AND SOLIDUS CURVES 

To obtain expressions for the slopes of the liquidus (AT/Aq) and of the 
solidus curves (AT/Ac,), we can obviously write from the equilibrium condi- 
tions &(T, c1) = &(T, c,) 

pA(T i AT, CI + ACI) = ,&(T + AT, C, i Ac,) (3.1) 

and hence it follows, using Eqs. (2.5-2.8) that 

Following our earlier work (Bhatia and March 1972) on eutectic systems, 
we now introduce a generalized concentrationdependent latent heat LA of 
A through 

We note that as CI, c, -+ 0, L A  + L A O .  Using (3.3) in (3.2), we have 

(3.4) 

Similarly from the second equilibrium equation we obtain 
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M A .  B. BHATIA AND N. H. MARCH 

3.1 Introduction of concentration fluctuations 

Evidently from Eq. (1.2) the concentration fluctuations Scct can be related 
to the activities. The results are 

d In a; 1 - cI .  d In a; 1 - c, 
(3.6) -=- -=- 

dCl S&- ’ dc, SLC 

and 

Equations (3.4) and (3.5) then take the form 

and 

(3.8) 

Eliminating first Ac, between (3.8) and (3.9), the slope of the liquidus is 
found ass 

m c 1  - cs) (3.10) AT -= - 
Acl sk[LAo - cs) + LBcs] 

This equation is the required generalization of the result (1.1) for the liquidus 
of a eutectic alloy. Similarly by eliminating Ac, between (3.8)- and (3.9) we 
find 

RTZ(C1 - cs) (3.1 1) AT - = -  
Acs %[LA(] - CI) + LBCI] ’ 

t In the solid, S& denotes <(Ac)’>’ and is nor the q -+ 0 limit of thestructure factor. Such a 
difference does not exist in the liquid.3 

$It will be evident that equations of the type (3.10-3.12) are applicable not only to equi- 
librium between the liquid and solid alloy but equally to equilibrium between any pair of 
phases of a binary system, with appropriate interpretation of the suffixes 1 and s and the latent 
heats. Their essential content has been known and used in different contexts since the time 
of Gibbs and KOIIOW~OW, see, for example, Rowlinson.) They do not seem to have occurred 
in the literature in the present form (using Sm), and, as far as we are aware, have not been 
previously applied to the study of the slopes of the liquidus and solidus. 
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CONCENTRATION FLUCTUATIONS IN BINARY LIQUID 51 

Hence at a given temperature, the ratio of the slopes of liquidus to solidus 
curves is given by 

(3.12) 

This formula demonstrates that if we draw tangents to liquidus and solidus 
curves at a given temperature T, the ratio of the slopes involves in a direct 
way the ratio of the concentration fluctuations in the liquid solution and in 
the solid solution. 

Equations (2.9) and (2. lo), together with the slopes of liquidus and solidus 
curves in equations (3.10) and (3.11) are then the fundamental equations 
determining the phase diagrams of the alloy systems with which we are con- 
cerned here. 

4 APPROXIMATE TREATMENT OF PURE COMPONENTS IN 
TERMS OF LATENT AND SPECIFIC HEATS 

So far our formalism is a consequence of thermodynamics and therefore is 
exact. However, in using Eqs. (2.9) and (2.10) in practical calculations, it 
is very helpful to express FAO and FBO, the differences in chemical poten- 
tials in liquid and solid (see Eqs. (2.11) and (2.12)) in terms of the latent 
and specific heats of the pure components. Let T A O  be the melting tempera- 
ture of pure A component. Then we can write 

F A 0  = p!40(T) - p i O ( T )  

The first two terms together in (4.1) are zero from the equilibrium condi- 
tion. We have also 

Furthermore 

i.e. the second derivatives are given by the specific heat differences. Hence 
we can write 
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)L A. 1. B H A I I A  A N U  N. H. MAKCH 

F~~ = L~~ (I - 2) - sT dT’ ( Jr %dT”) (4.4) 
TAO TAO TAO 

snd 

Our earlier work2 indicates that usually the term in A in (4.4) or (4.5) is a 
small correction and in the practical evaluations reported below we shall 
therefore neglect it. 

To be definite, we shall always choose, throughout the paper, the element 
A to have the lower melting point, i.e. TAo < TBo. 

5 PHASE BOUNDARIES FOR IDEAL AND CONFORMAL 
SOLUTIONS 

We shall next consider the consequences of the treatment embodied in 
Eqs. (2.9) and (2.10) for two simple models. 

5.1 Ideal solutions 

Here y1 = ys = 1, and if we write (neglecting A in Eqs. (4.4) and (4.5)) A A  

T 
exp ( - z ) = e x p  [ - “ ( I  RT - - - ) ]=A( -  TAO (5.1) 

and similarly 

then 

1 - C, = (1 - c,)A 

and 

C, = c,B. 

The solution for the liquidus is evidently 

B(A - 1) 
A - B  c, = (5.4) 

(5 .5)  

and for the solidus 
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CONCENTRATION FLUCTUATIONS IN BINARY LIQUID 

These are well known results* and show that CI  and c, depend on the latent 
heats and melting temperatures of the pure components. While these equa- 
tions reveal some of the qualitative features of ascending phase diagrams 
(but not of minimum type, see the Appendix), they must be transcended to 
describe metallic alloys by inclusion of departures from ideality. 

5.2 Conformal solutions 

The simplest inclusion of some degree of non-ideality (basically, weak inter- 
action) can be made via the zeroth regular (or a little more generally, con- 
formal) solution approximation. Here, if the interaction energies in the 
liquid and solid solutions respectively are y and w,, the activity coefficients 
take the form 

53 

Inserting these results into Eqs. (2.9) and (2.10), and using Eqs. (4.4) and 
( 4 3 ,  the two equilibrium equations can be solved simultaneously by numeri- 
cal methods for q(T) and c,(T), the input data being the known latent heats 
and melting temperatures of the pure components A and B, and the two 
interaction energies 01 and wS. 

Though we recognize that this is an oversimplified model for numerous 
ascending and minimum type phase diagrams, it will be useful to begin the 
discussion by taking a specific example, Ag-Au, and working out the way the 
shapes of the liquidus and solidus curves depend on the interaction para- 
meters. 

6 PHASE DIAGRAM FOR AS-AU FROM CONFORMAL 
SOLUTION MODEL 

For Ag-Au we have as input data (A = Ag) 

TAo = 1234"K, TBO = 1336'K 

LAO (cal/mole) = 2690, LBO(cal/mole) = 3050. 

As the simplest starting assumption we will take o1 = W, = W ,  say, and 
consider how the choice of o affects the ideal curves. We have plotted in 
Figure 2 the results for the choice wl = oS = 2120°K, t and the two crosses at 

tThis value was estimated from heat of mixing data.' 
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54 A. B. BHATIA AND N. H. MARCH 

T "K 

A l l  

FIGURE 2 Liquidus and solidus curves for Ag-Au. The crosses denote points from "ideal" 
solution theory, around c - 0.5. The interaction with q = ws contracts the ideal curves 
slightly in this case. 0 Experimental points taken from H a n ~ e n . ~  Curves marked w1 Z ajs 
are from conformal solution theory. 

c - 0.5 show that the ideal curves q = wS = 0 are slightly narrowedbyinter- 
actions of this magnitude, but that the influence of such interaction energies 
on the ideal curves is very small in this case. At c1 = 0.5, [cs - cl],ded = 0.022 
whereas c, - c1 = 0.012 with the interaction energies shown. The observed 
curves are also shown, they lie above these calculated curves and have a 
substantially greater separation between solidus and liquidus. However, 
changing ws slightly to -2185°K yields the curves marked q f .  ws in Figure 
2. The concavity of the liquidus and solidus curves is then correctly given, 
though the width between them is too small to  agree with experiment. 

7 OTHER ALLOY SYSTEMS WITH ASCENDING TYPE 
PHASE DIAGRAMS 

Because they have qualitatively different features from Ag--Au, we shall 
consider also the further systems 

TAO"K TBO LAo(cal/rnole) LBO 
(i) Cd-Mg 594 922 1530 2100 

and 
(ii) Bi-Sb 544°K 903 O K  2600 4700 

For Cd-Mg we estimated from heat of mixing data that w - -3000"K.A~ 
Figure 3 shows, we do  not get agreement with experiment if' we take 01 = 
ws = -3000°K. We have therefore made W, less negative, and the results 
ws = -2735°K are also shown in Figure 3. These are in quite satisfactory 
agreement with experiment. 
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T’K 

55 

I 

FIGURE 3 Liquidus and solidus curves for Cd-Mg. The crosses denote “ideal” solution 
values. Upper pair of curves from conformal solution theory with w1 = %; lower pair for 
W ,  # us. 0 Experimental points taken from H a n ~ e n . ~  

Finally, for the ascending types of diagram, we have considered the system 
Bi-Sb. The ideal curves (dashed) and Hansen’s curves are shown in Figure 4. 
Lf wl and o, are assumed to be independent of temperature, then the heat of 
mixing data5 implies w1 = 600’ K and os = 0 f 400° K. This does not give the 
correct trends from the ideal solution curves. We have determined w 1  and 
us from the observed values of c, and T when c1 = 4, obtaining W ,  = 121 O K  

and wS = 756 K. The dashed curves with crosses are calculated taking these 
values for y and us. While the agreement with experiment is good, there 

FIGURE 4 Liquidus and solidus curves for B i S b  (example of type (iv) of Figure 1). Ideal 
curves (dashed lines); experimental results (smooth curves)fromHansen: - x - x curves from 
conformal solution theory with ul # us. 
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56 A. B. BHATIA AND N. H. MARCH 

are some discrepancies particularly at the Bi rich end. Since neither Bi nor 
Sb are simple metals, it is possible that the interaction energy is concentra- 
tion and temperature dependent. In any case it seems that we need some 
modification of the conformal solution model (with 0s' independent of T) 
in this case. 

8 MINIMUM TYPE PHASE DIAGRAMS? 

Having considered at least briefly types (i), (ii) and (iv) of Figure 1, we turn 
finally to (v), the minimum-type phase diagram. We have already remarked 
that no such diagram is possible for ideal solutions. However, it is interesting 
in this connection to return to the slopes of the liquidus and solidus curves 
given by Eqs. (3.10) and (3.1 1). In the alloys considered here, SCc is always 
finite and it follows therefore that AT/Ac, and ATlAc, both are zero when 
cI = c, , a property characterizing the minimum-type phase diagram (v) of 
Figure 1. Thus, the possibility of such solutions exists in the present formal- 
ism. 

We shall return to this point below, but it will be convenient first to 
consider a specific example Au-Cu. Calculations for the ideal case have 
been made, and, inevitably, lead to a simple ascending diagram in disagree- 
ment with experiment. Using heat of mixing data,S we have estimated q = 
-3275 OK and w, = -2440. Immediately a minimum type phase diagram is 
obtained and without any adjustment of q and w, the correct minimum 

I 
All  c u  

FIGURE 5 Liquidus and solidus curves for Au-Cu. 0 Experimental points taken from 
H a n ~ c n . ~  Curves from conformal solution model. 

t Our arguments below are about turning points rather than minima. To our knowledge, all 
binary metallic phase diagrams have turning points which are minima. However, maxima are 
possible in principle (see comments of Ag -Au). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



CONCENTRATION FLUCTUATIONS IN BINARY LIQUID 57 

temperature T, is predicted. Figure 5 shows the results, and though qualita- 
tive differences remain elsewhere in the phase diagram, the agreement 
between theory and experiment is good. 

In fact, it turns out that the minimum temperature T, and the corres- 
ponding concentration c, depend entirely on q - w, for conformal solu- 
tions, not on q and w, separately, as we shall now demonstrate. Returning 
to Eqs. (2.9) and (2.10) we see that when c1 = c, = c, at T = T, then 

But for conformal solutions, the activity coefficients are given by Eqs. (5.6) 
and (5.7) and Eqs. (8.1) become 

and 

This demonstrates that in conformal solution theory, when (8.2) and 
(8.3) have physical solutions for T, and c,, they can only depend on 
q - w,. Putting q = a,, it is clear that no solutions of minimum type exist. 

We have here discussed the turning points as minima. But we want to 
record here that in the course of our calculations on Ag-Au that we discussed 
above, the effect of changing w, to -2500°K was studied. A maximum 
type diagram resulted, with T,, = 1372°K. It seems therefore that the 
pronounced (concave) curvature in the measured liquidus-solidus curves for 
Ag-Au shown in Figure 2, as compared with the flatter ideal solution 
curves, could properly be considered as due to a (weak) tendency to form a 
maximum type diagram. In fact, as remarked earlier in connection with 
Figure 2, a much smaller difference between w1 and ws is required to get a 
curvature in agreement with experiment. 

In the same vein, for Cd-Mg we find for w, = -2000°K a minimum 
solution, with its minimum at C M ~  -N 0.3. While, in practice, the difference 
between wt and w, is much too small to induce a minimum, the pronounced 
convex curvature can be thought of as due to a tendency towards amini- 
mum-type diagram in this alloy. The fact that the width of the observed 
region between solidus and liquidus is wider at the Mg rich end (see Figure 3) 
is quite consistent with this point of view. 

9 DISCUSSION AND SUMMARY 

The most important consequence of the thermodynamics of the liquidus 
and solidus curves given here is that the possibility of minimum-type phase 
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58 A. B. BHATIA AND N. H. MARCH 

diagrams is immediately seen to be contained in the theory. However, the 
limit of ideal solutions loses the minimum-type behaviour, only ascending 
diagrams being possible. Furthermore, we have demonstrated -(see Eqs. 
(8.2) and (8.3)) that the conformal solution model for both liquid and solid 
solutions leads to minimum-type behaviour only if q f 0,. 

But for Au-0.1, if we retain the conformal solution model, but estimate 
q and w, from heats of mixing in the liquid and solid state, then we im- 
mediately obtain a minimum-type diagram, with a minimum temperature in 
agreement with experiment. Differences of detail remain, but all the general 
features are clearly given by the present treatment. 

For the ascending type diagrams, departures from ideality are evident now 
only from quantitative comparisons. The conformal solution model is useful 
in Cd-Mg, and to a lesser extent in Ag-Au, and B iSb .  The indications are 
that in numerous systems, departures from such a model will have to be in- 
corporated. This is clearly the case, for example, in Au-R (see (iii) of Figure 
l ) ,  where from the shape of the solidus curve’the concentratiori fluctuations 
in the solid must peak around a Pt concentration of 0.6 and then decrease 
rapidly by a concentration of 0.7. 

Needless to say, the behaviour of S& must reflect the electronic structure 
of the alloy, filling of Brillouin zones etc. This is a matter for future work, 
but it is worthwhile to conclude with two remarks related to this point. 
First of all March, Tosi and Bhatia’ have demonstrated an intimate con- 
nection between Scc and the electron-electron correlation function s,, in 
highly conducting metallic alloys. Secondly, when conformal solution theory 
is appropriate, all solution properties can be related to those of a reference 
liquid. In particular, the interaction energy o can be calculated explicitly 
from a knowledge of the radial distribution function g(r) and the pair inter- 
action t(r) in the reference liquid. For the simpler metallic alloys (e.g. 
K-Rb, which has a minimum-type phase diagram) the calculation of #(r) 
c q  again be tackled from electron theory. Thus, the present work, while 
thermodynamical in origin, can be viewed as representing a further step 
towards relating phase equilibria to structure, both ionic and electronic. 
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Appendix 

PERTURBATIVE TREATMENT OF DEPARTURES FROM 
IDEALITY 

To assess the effects of small departures from ideality, let us treat the c a e  

when both 131 g 1 and )%I (< 1. Then we can write RT RT 

where, in the “correction” terms a m  we have replaced c1 and c, by their 
“ideal” values ci and ci. Similarly we can write 

I 
+ = I  + - ( I -  9 4 2  - 4 1  - C Y  

YB RT RT 

Then we can evidently express the equilibrium conditions (2.9) and (2. lo), if 
we neglect the specific heat differences d in Eqs. (4.4) and (4.5)in the form 

and 

A(T) and B(T) being defined in Eqs. (5.1) and (5.2). After a short calculation, 
we can then write c1, to first order in 01 and ws, in terms of the ideal liquidus 
cf(T) as 

(A - 
B B 2  
A A 

In the special case when not only the interaction is weak in the solid and 
liquid solutions, but q = ws = w say, then 

( q ( 2 B  - B2) - us} . (A5) 1 q(T) = cli(T) 1 - ”’ - ws + 
RT(I - -) A(l - -) RT [ 

1 0 (1 - A)(B - 
B 2  [ RT A(l --) 
A 

cI (T) = c~(T) 1 + - 

With our convention that TAo < TBO, the quantity multiplying w/RTis 
always negative and therefore q(T) 2 c,‘(T) if w is negative, and 5 c,’(T) 
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if w is positive. This means that the liquidus curve for small -ve wwillalways 
lie belowthe ideal liquidus curve, the opposite situation obtaining for +ve W. 

A1 

If we use the result (A6), we can readily see, since A-1 + 0 as 'r -+ T A O  that 

A C ,  A c i ( T )  
A T  A T  

Slopes of solidus and liquidus curves at  end points 

(A7) - -+ -. 

w Thus, in the case when 01 = wS = w and I - I K 1, we expect the actual 

and ideal curves to start out together from the pure end points. 
This is a useful conclusion in understanding binary phase diagrams of the 

kind we are considering here. It tells us that the minimum-type of diagram, 
which does not occur in an ideal solution (see below) cannot be explained 
without a substantial departure from simple conformal solution theory, 
with q = us. 

In general, of course, we must get the slope of the liquidus from the basic 
equation (3.1 1). But for the ideal case we can readily show from Eq. (5.4) that 

RT 

Since from Eq. (5.2), B(TA0) < 1, A T / A C , ! ~ ~ ~  is always positive. This 
demonstrates that non-ideality is crucial for minmum-type pbase diagrams. 
Even in conformal solutions, as we have seen, minimum-type diagrams 
can occur only if y 4 ws.  
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